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Flow in a tube with a small side branch 
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Atherosclerotic lesions in mammalian blood vessels show a definite spatial pattern, 
and it has been proposed that lesions occur preferentially in regions with a low wall 
shear stress. Near the entrance to an intercostal artery, lesions on the wall of the 
aorta occur, initially at least, downstream of the entrance. We model the flow in this 
region by a linear shear flow along a flat wall (the wall of the main tubelaorta) past 
an infinitely deep circular hole perpendicular to the wall (the side-branch f intercostal 
artery), with fluid being sucked into the hole. By assuming Stokes flow, the three- 
dimensional model problem is reduced to two independent problems on a two- 
dimensional domain. By addition, the solutions for these problems provide the 
solution for any particular side-branch flow rate. We find that the wall shear stress 
in the main tube is elevated upstream of the side-branch entrance, and downstream 
as well if the side-branch flow rate is small. However, if the flow rate in the side 
branch is large enough, there will be regions of both elevated and reduced wall shear 
stress in the main tube downstream of the side-branch entrance, including a 
stagnation point. The wall shear is lower downsteam than upstream unless there is 
no net flow into the side branch. 

The solutions given apply to the case with flow out of as well as into the hole. Also, 
the asymptotic structure for the flow in the hole when there is no net flow into the 
hole, and the analysis of three-dimensional flow near a sharp corner, are given. 

1. Introduction 
In the past 15 or so years there has been considerable interest in the role of the wall 

shear stress in the development of atherosclerosis in mammalian blood vessels. Fry 
(1973) proposed that high shear levels damage the endothelium (which forms the 
surface of blood vessels), and lead to increased permeability of the arterial wall, and 
hence to atherogenesis. Conversely, Caro, Fitz-Gerald & Schroter (1971) suggested 
that atheromas (growths of fatty material) are initiated in regions of low shear, 
because the transfer of lipids (fat) from the arterial wall is altered in such regions. 

This controversy has been superseded as a result of more recent studies (see 
Steinberg 1983 for a review of hypotheses for artherogenesis and Schettler et al. 
(1983) or Chobanian (1983) for views on the role of fluid mechanics in atherogenesis). 
It is now generally accepted that the endothelial monolayer is continuous, with no 
evidence of cell denudation in the early stages of artherosclerosis (Schwartz, Reidy 
& Hansson 1983; Weinbaum et al. 1985). Indeed, it appears that physiological shear- 
stress levels are not large enough to erode endothelial cells from the wall (Nerem & 
Levesque 1983). It is also generally accepted that ‘prelesion’ or ‘blue’ areas of the 
arterial wall, which can identified by their uptake of Evans Blue dye, are preferred 
sites for athersclerotic lesions. These lesions can eventually result in severe occulsion 
of the major blood vessels. The prelesion areas, which are characterized by an 
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enhanced endothelial permeability to plasma macromolecules, also have a sig- 
nificantly greater endothelial cell ‘turnover’, i.e. the cells have a shorter life 
(Schwartz et al. 1983; Weinbaum et al. 1985). Using a mathematical model, 
Weinbaum et al. (1985) studied the connection between cell turnover and 
permeability. Their results provide strong support for the theory that the increased 
cell turnover is responsible for the increase in permeability. 

From studies of vascular casts, it appears that the shape and orientation of 
endothelial cells depend on the local flow conditions, with elongated cells which are 
aligned with the direction of the flow in regions of high shear, and rounded cells in 
regions of low shear (Nerem, Levesque & Cornhill 1981). This has also been found 
with in witro studies of cultured endothelial cells (Nerem & Levesque 1983). It also 
appears that prelesions, and eventually atherosclerotic lesions, are more likely to 
occur in regions having more rounded cells (Nerem & Levesque 1983 ; Schwartz et al. 
1983). 

In  summary, the experimental data outlined above suggest that regions of low wall 
shear, such as separation and reattachment points, will be susceptable to 
atherosclerosis. Note that while this is an attractive hypothesis supported by much 
experimental evidence, the evidence itself is complicated and its interpretation is by 
no means clear cut (see Nerem & Levesque 1983; Chobanian 1983). Indeed, one of the 
problems is in determining which regions have high and low wall shear stress, a 
question addressed below for our model problem. 

Of particular interest here is the study by Cornhill & Roach (1976, hereinafter 
referred to as CR), who measured pre-lesions in the vicinity of intercostal arteries in 
cholesterol-fed rabbits. The intercostal arteries branch from the thoracic aorta, and 
CR found lesions on the walls of the aorta distal to the intercostal ostia (i.e. 
downstream of the entrance). Similar patterns have been found in humans 
(Sinzinger, Silberbauer & Auerswald 1980), and pigs (see Chobanian 1983). 

CR interpreted their results as supporting Fry’s high-shear hypothesis. However, 
as pointed out by Sobey (1977), CR’s interpretation is based on a comparison with 
flow in the special case of a symmetric bifurcation, whereas a branch formed by the 
descending aorta and an intercostal artery is far from symmetric. In particular, the 
bifurcation has the form of a relatively straight main tube (the aorta) with a much 
smaller side branch (an intercostal artery), with only a small fraction of the flow in 
the main tube being diverted into a side branch. In  the rabbits studied by CR, the 
intercostal arteries have a radius of about 0.16 mm, approximately +,th of the radius 
of the aorta a t  the bifurcation. 

The model used in this study is a straight main tube with a much smaller side 
branch perpendicular to it. Provided that the side-branch radius and flow rate are 
small enough, there will be Stokes flow near the mouth of the side branch, and the 
main tube wall will be a flat plate at leading order (see $2 below). Sobey (1977) 
considered the two-dimensional version of this problem, with a simple shear flow 
along a flat wall past a slot. He found that the local wall shear in the main tube 
depends only on the transverse velocity a t  the mouth of the slot, and hence 
concluded that models such as that of Smith (1976), with the flow a t  the slot entrance 
normal to the wall of the main tube, are unlikely to be accurate very near the slot. 
Sobey also found that Smith’s solution, derived using boundary-layer theory, is a 
good approximation far from the slot. 

In the present work, the three-dimensional version of Sobey’s problem is 
considered, i.e. we assume a circular main tube with a circular side branch 
perpendicular to  the main tube, and then study the flow near the entrance to the side 
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branch. The local Stokes problem, which was formulated by Pedley (1980, p. 276),  
is that of a linear shear flow along a flat wall past the mouth ofa  circular pipe set into, 
and normal to, the flat wall. Pedley also presented an analysis of the far field where 
the Stokes equations are not applicable. This analysis implies that the wake in the 
main tube downstream of the side branch has a complicated structure. One result of 
the present work is the calculation of a previously unknown parameter appearing in 
Pedley’s asymptotic solution (see $ 2 ) .  

By Fourier analysis, our problem reduces to two indepedent problems on a two- 
dimensional domain. These problems are reformulated and some preliminary 
analysis is given in $ 2 .  The numerical method used is detailed in $ 3 ,  and the results 
are presented in $4 and discussed in $ 5 ,  where their physiological relevance is 
considered. Appendix A gives the eddy structure found in the side branch if there is 
no net flow down the side branch, and Appendix B examines the nature of three- 
dimensional flow near a sharp corner. 

2. Formulation 
Suppose that a circular pipe of radius a* with velocity O(U*) has a small circular 

side branch, perpendicular to the main tube, of radius b* = 6a* with velocity 0(6U*),  
where 6 < 1 .  Then, if 

where Re, and Re = pU*a*/,u are the side-branch and main-tube Reynolds numbers 
respectively, the flow near the side branch is governed at leading order by the Stokes 
equations, i.e. 

I7.u = 0 ,  ( 2 . 2 4  

and V2u - 023 = 0. (2 .2b )  

Here x* = 6a*x, u* = SU*u, p* = ( ,dJ*/a*)p;  p* is the pressure, and p and ,u are the 
density and viscosity of the fluid respectively. The origin for x is taken as the centre 
of the mouth of the side branch, and, to leading order in the neighbourhood of 
the junction (i.e. where x = O ( l ) ) ,  the wall of the main tube is the plane x = 0 (see 
figure 1).  

To leading order the undisturbed flow in the main tube near the wall will be shear 
flow, and the flow down the side branch will tend to Poiseuille flow. Therefore the 
boundary conditions are 

u-+(O, -x,O)+o(x) as r 2 + x 2 - + c o ,  ( 2 . 3 ~ )  

u = O  o n z = O , r > l ,  (2 .3b )  

Re, = P R e  << 1, (2 .1)  

in the main tube (z < 0), and 
u = O  o n r = l ,  ( 2 . 3 ~ )  

u - ( & b U s ( ~ ) , O , O )  as z-+co, (2 .3d )  

in the side branch (x > 0, r < l ) ,  where y = r cos 0, z = r sin 0, U,(r)  = 4( 1 - r2) ,  and 
Qb is the one free parameter in the problem. 

Equations (2 .2 )  and (2 .3 )  define the Stokes problem with which this study is 
concerned. A formal expansion could be made in terms of 6 and Re, but the order of 
the minor terms will depend on the magnitude of &Re - if 1 < &Re < S1 then the 
next term is of O(Re,) and comes from the inertia of the fluid, while if 6 Re < 1 the 
next term is O(6) from the matching to the flow in the main tube and the curvature 
of the wall. 
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FIGURE 1. Coordinate system. 

The terms o(z) in (2 .3a)  are important, and ensure that overall continuity is 
satisfied, i.e. that the flow in the main tube allows for the flow down the side branch, 
which has mass flow rate 27rQQ,. These terms are given below. Note that the ratio of 
the mass flow in the side branch to that in the main tube is O(a3). 

Note also that, because of linearity, the problem can be split into two independent 
problems each satisfying the no-slip condition, a problem with shear flow past the 
side branch with no net flow into the side branch (obtained by setting Qb = 0 above), 
and an axisymmetric problem with fluid being sucked into the side branch from the 
half-space. The solution for non-zero Qb is then found by superposition. This 
procedure is used to  simplify the calculations (see below). 

2.1. Analytical results 

Various analytical formula are available for the solution of (2 .2 )  and (2 .3) ,  both in 
polar (Parmet & Saibel 1965; Lew & Fung 1969; Dagan, Weinbaum & Pfeffer 1982; 
Appendix A) and Cartesian coordinates (Sobey 1976). The Cartesian form is preferred 
here as the resulting formulae are easier to evaluate numerically. By making a triple 
transform (Fourier in y and z and Laplace in -z), the bounded part of the velocity 
in the main tube (x < 0), 

and the pressure p are found to be 

u = u- (0, --x, O ) ,  (2.4) 

where. 

(2.5b) 

K = xu,(O,y’,z’)+(y-y’)u,(O, y ’ , z ‘ )+ (z -z ‘ )uz (0 ,  y’,z’), ( 2 . 6 ~ )  

R2 = X ~ + ( Y - Y ’ ) ~ + ( Z - Z ’ ) ~ ,  (2 .6b)  
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and u = ( u ~ ,  uy, uz) in x = (x, y ,  z )  (Sobey 1976; see also Pedley 1980, p. 279).  For 
the present problem the range of integration in (2 .5 )  is restricted to r < 1 .  Note 
that (2 .4)-(2.6)  imply that the shear on x = 0 is independent of the normal velocity 
u, (0, y ,  z ) ,  and that if there is no tangential velocity a t  the mouth of the side branch 
then the wall shear in the main tube is simply that from the mainstream shear flow. 
i.e. (0 ,  - 1 , O )  (Sobey 1976, 1977). In  contrast, the wall pressure in the main tube 
comes from the normal velocity alone, and is independent of the tangential 
velocity. 

2.2.  Formulation i n  cylindrical polars 

First, let us reformulate the problem in velocity-vorticity terms, since these 
variables are used for most of the numerical calculations : let 

< = v x u ,  (2 .7 )  

v2u = - v x < ,  (2 .8 )  

where < is the vorticity of the fluid. Taking the curl of (2 .7 ) ,  and using the continuity 
equation ( 2 . 2 a )  gives 

while eliminating the pressure from the momentum equation (2.2 b)  yields the 
vorticity transport equation : 

V'T = 0.  (2.9)  

Now, take u = (u, 23, w) and< = (c ,  q,<) in cylindricalpolars (z, r ,  8). Then. expanding 

( 2 . 1 0 ~ )  

(2.10 b )  

in a Fourier series, the velocity and vorticity reduce to 

( u ,  21, <) = Qb(iiO(z, r ) ,  uo(x, r ) ,  C0(x, r ) )  + (u,(x, Y), ti1 (x, r ) .  C l ( x .  r ) )  cos 8, 

(w, 6 , q )  = (w1 (% r ) ,  61 (x, r ) ,  71 (% r ) )  sin 8, 
all other terms being zero. Likewise, the pressure is given by 

p ( ~ 3  r ,  8) = Qbpo(x, r )  + P ~ ( x ,  r )  ~ 0 ~ 8 .  (2.1Oc) 

Substitution of (2 .10)  in (2 .7 )  and (2.8) along with the continuity equation ( 2 . 2 a )  
produces a system of nine partial differential equations for the nine dependent 
variables. As mentioned above, the problem can be split into two independent 
problems. The axisymmetric problem (A) of flow entering the side branch from the 
main tube involves the variables with subscript zero only, and has as governing 
equations 

(/V2+g)F= G ,  (2 .11 )  

where I is the 3 x 3  identity matrix, g is a 3 x 3  matrix with all elements zero 
except : 1 

Q22 = 9 3 3  = -7' ( 2 . 1 2 u )  

the vectors F and G are 

and 

(2 .12b)  

(2 .12c )  

is the axisymmetric Laplacian. Also, from (2 .7 ) ,  

(2 .13)  
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for R, = ( r 2 + x 2 ) t  + 1 .  The boundary conditions for Problem A then become 
The o(x)  terms in (2.3a) can be obtained from (2.4)-(2.6) and (2.10) by expanding 

u o = w o = O  o n x = O , r > l ,  r = l , x > O ,  (2.14a) 

wo = go = 0 a t  r = 0, (2.14b) 

uo+Us(r) ,  v,+O as x+00, r < 1, (2 .14~)  
and as RO+ 00 

1 

Q, = 1 p 2 ~ i , ( 0 , p )  Q, = p 3  uO(@ P )  dp. (2.14 f )  where 

Condition (2.14b) has been obtained from the Taylor series for r 4  1 and the 
governing equations. 

The non-axisymmetric 'zero-suction' problem (C) of shear flow past the side 
branch involves the variables in (2.10) with subscript one only, and has as governing 
equations (2.11) where I is now the 6 x 6 identity matrix and g is a 6 x 6 diagonal 
matrix with non-zero elements 

1: 

and the boundary conditions for Problem C are 

u1 = v1 = w1 = 0 

u1 = 5, = 0, vl = -wl = -wl, ql = gl 

on x = 0, r 2 1, r = 1,x < 0, 

a t  r = 0, 

ul,vl,wl+O asx+co, r , (  1, 
and as R,+ GO 

- x2r - xr 15x2r - 
u =-3Q --UQ -+- 

' R ;  'R; R; 

(2.15a) 

(2.15 6) 

2 T  
-2%) . 

( 2 . 1 5 ~ )  

(2.16) 

(2.17 a) 

(2.17 b) 

(2 .17~)  

(2.17d) 

- xr2 - x2 
v1 =-x-3Ql-+aQ - 1-5- R; 'RZ( zi) 
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Problem A 

Q, -0.11 
QZ 0.37 

Problem C 

Q1 0.052 
Qa -0.011 
Q 3  0.020 
Q, -0.0007 

TABLE 1 .  Coefficients for the far-field expansion in the main tube, as defined 
in (2.14f) and (2.17g) 

Note that each of the coefficients in (2.14f and 2.179) gives a ‘flow’ which satisfies 
the continuity equation (2.2a), and that the flow given by the first term in each of 
(2.14d, e )  satisfies overall continuity for the axisymmetric problem A, and is, in fact, 
the solution for a Stokes flow in a half-space with a point sink a t  the origin. Also, it 
is apparent from the expansions above that the behaviour of the flow in the far field 
in the main tube varies with x and r .  For example, for -x 9 1, Problem A is 
dominated by the first term in (2.14d, e ) ,  while close to the wall (-x 4 l ) ,  the term 
with Q ,  is dominant (in particular, in the expansion for the shear stress on the wall). 
The coefficients in (2.14f and 2.179) must be calculated interactively. Table 1 gives 
the values obtained numerically. We note that 2nQl is the parameter K ,  appearing 
in Pedley’s (1980, p. 281) far-field asymptotic analysis. 

The Stokes problem (2.2) and (2.3) has now been de-coupled into two independent 
Stokes problems on a two-dimensional L-shaped domain (see figure 2), and is in a 
form suitable for numerical computation. Neither of the problems explicitly ensures 
that the continuity equation ( 2 . 2 ~ )  and the vorticity definition (2.7) are satisfied. In 
general it follows that if the vorticity definition is satisfied on the boundaries, ( 2 . 2 ~ )  
and (2.7) will be satisfied everywhere (this provides the method of calculating the 
boundary vorticity -see Q 3). However, the sharp corner a t  (x ,  r )  = (0 , l )  creates 
difficulties, a point discussed briefly in 53 below. 

For later reference, with (2.10) the continuity equation reduces to 

and 

auo 1 a 
-+--(rwo) = 0, 
ax ra r  

aul i a 1 
-+--(rv1)+--wl = 0. 
ax ra r  r 

( 2 . 1 8 ~ )  

(2 .18b)  

Also, the components of the main-tube wall shear stress are defined as ry = au,/ax 
and 7, = au /ax on x = 0, where r > 1,  with similar definitions for 7, and ro. 
7 = (7Z+ry)2 = (7: +7;): gives the magnitude of the wall shear stress. Note that with 
this definition the basic shear in the main tube is negative. 

2 P  
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FIGURE 2 .  Computational domain. 

3. Numerical 
Equations (2.7)-(2.9) are the Stokes version of the velocity-vorticity formulation 

used by Dennis, Ingham &, Cook (1979) to solve the steady three-dimensional driven- 
cavity problem in Cartesian coordinates. Their finite-difference scheme, which is 
second-order accurate, has diagonally dominant matrices and is stable for Reynolds 
numbers greater than 100. Likewise, the scheme presented below for (2.11)-(2.13) is 
second-order accurate and the associated matrices are diagonally dominant. Note, 
that, here and below, second-order accurate implies an O(h2) truncation error in the 
finite-difference analogue of the relevant equation. 

3.1. The basic method 

A rectangular grid ( x t , r j )  = h( i , j )  was used, with i = L , L + l ,  ...,-- 1 , O  and 
j = 0,1,  ..., M in the main tube, and i = 0, 1,  ..., N and j = 0, 1 ,..., M ,  in the side 
branch, where L < 0, M,Mb and N >0,  and h = l/M,. Unless specifically men- 
tioned, all results presented below have N = M = - L = M,. This was found to give 
boundaries sufficiently distant from the side-tube entrance to alow the use of 
asymptotic expansions (2.14d-f and 2.17d-g) in the main tube, and to make the 
flow near the entrance essentially independent of the exact form of the conditions 
used a t  the bottom of the side branch (see below). 

For most ( i , j )  in the fluid, standard central differences were used for the governing 
equations (2.11) with (2.12) or (2.15). An obvious exception is a t  r = 0, where these 
equations do not apply. Here application of L'HBpital's rule produces the correct 
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limiting form for quantities not determined by (2.14b) and (2.17b), e.g. the equation 
for uo becomes 

which with 

gives a finite-difference equation. Another exception is a t  the points immediately 
adjacent to the corner. The singularity in the Stokes expansion (Moffatt 1964; 
Moffatt & Duffy 1980; see also Appendix B below) implies an infinite vorticity a t  the 
corner, which prevents the use of the standard finite-difference formulae at the points 
(2, r )  = (0, l-h) and ( -h ,  1). For a Navier-Stokes flow in a branching channel, 
Bramley & Dennis (1984) compared two basic methods for dealing with this 
problem - arranging the finite-difference representation so that the corner vorticity 
was never used, and using the Stokes expansion directly. There was good agreement 
between the two methods, and they concluded that either was satisfactory, The 
former procedure has the advantages that it does not imply a particular form for the 
vorticity, and that it extends simply to three-dimensional problems. It was used 
here, with the finite-difference molecule rotated to avoid the corner point when 
necessary, e.g. instead of using the values at (i+ l , j) ,  ( i ,  j f 1 )  and (i,  j) for vorticity at 
( i , j )  = (O,Mo -l) ,  the values a t  ( i + l , j & l )  and ( i j )  were used. 

Apart from the matching conditions in the side branch, which are discussed below, 
application of the boundary conditions for the velocity components is straight- 
forward. Simpsons rule was used to calculate the coefficients (2.14f) and (2.17g) 
for the far-field expansions in the main tube. 

The wall vorticity was calculated from finite-difference analogues of the definitions 
(2.13) and (2.16) in the manner of Dennis et al. (1979). These formulae are in a sense 
the velocity-vorticity form of the stream function-vorticity formula of Woods (1954), 
in that they are O(h2) accurate and compact, using the velocity and vorticity a t  the 
wall and at  a distance h from it. For example, 

2 
( C O ) i , M 0  = - (50 )1 ,Mo- - l+h(Ug) ( ,MO-1  for i = 1,8> . . - , N  (3.1) 

is obtained from (2.13) and the continuity equation ( 2 . 1 8 ~ ~ ) .  
In  the main tube, the far-field vorticity can be obtained from the asymptotic 

expansions for the velocity (2.14d-f) and (2.17d-g) and the definitions (2.13) and 
(2.16). Alternatively, formulae similar to, but more complicated than (3.1) could be 
used. Test runs showed that the latter method slows down the convergence rate, and 
does not signficantly affect the results. Hence the more direct method was used. 

3.2. Continuity 
Unfortunately, there is a serious flaw in the above finite-difference scheme, in that 
continuity is not satisfied locally. If the axisymmetric problem (2.1 1)-(2.14) is solved 
with, say, h = A( = i/Mo) and N = M = - L = Ma, this has the result that the mass 
flow a t  the mouth of the side branch is approximately one-quarter of that expected, 
i.e. the numerical solution gives 

(0, r )  dr % 0.23 
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instead of unity. Refining the grid while keeping the calculation domain constant 
does not improve matters significantly. This problem arises naturally from the corner 
singularity. Details will be given in a later publication. 

To enforce continuity and the vorticity definition ( 2 . 1 3 4 ,  the governing equation 
for u, was replaced on the entrance to the side branch (x = 0 , r  d 1) .  by the finite- 
difference version of 

d2Qo 
dr2 r dr 

( 3 . 2 ~ )  

with Qo(0) = 0, Q o ( 1 )  = 1, (3 .2b)  

( 3 . 2 ~ )  
and uo calculated from 

This was found to produce satisfactory results (see below). Note that Qo(r) is simply 
the standard stream function evaluated at x = 0, and ( 3 . 2 ~ )  is, in effect, the Poisson 
equation which can be used to define the vorticity in two-dimensional flow. A similar 
technique was used to calculate u1 on x = 0 ;  i.e. (3 .2a ,  c )  with ul,  v1 and Cl, and (3 .2b)  
replaced by Q0 (1) = 0 and dQ,/dr = d2Q,/dr2 = 0 a t  r = 0 (from u1 (x, 0) = 0). 

1 dQo U ,  (0, r )  = 
r dr 

3.3. The side branch 

In $ 2  above, the boundary condition down the side branch is given simply as a 
matching condition at infinity (equations ( 2 . 3 d ) ,  ( 2 . 1 4 ~ )  and ( 2 . 1 7 ~ ) ) .  We now 
consider this condition in detail. 

For the axisymmetric problem A, the values a t  x,,, = 4 were set from Poiseuille 
flow. Theoretical justification for this is provided by the work of Lew & Fung (1969), 
who found that the deviation from Poiseuille flow decays as exp ( -2 .405x) ,  and that, 
for uniform entry flow, the flow was within 1 % of Poiseuille flow at x = 1.3. Also, 
Dagan et al. (1982) solved a problem similar to A and found that the flow was within 
1.5% of Poiseuille flow at x = 0.5. Further, experimentation showed that extending 
the calculation region beyond x = 4 did not make a significant difference to the 
numerical results, nor did varying the condition applied a t  x,,, = 4 (e.g. using a 
symmetry condition). 

The zero-suction problem C is more difficult, in that  there is no dominant term that 
is independent of x for large x. As x + 00, the flow has the form of a series of counter- 
rotating eddies, all of the same size but decaying exponentially in magnitude - see 
Appendix A below for details. This asymptotic structure was used to set the values 
a t  x,,, = 8 by locating an eddy centre in the numerical results and scaling the 
asymptotic solution so that the vorticity from both solutions is the same at the eddy 
centre. Comparison showed that the numerical solution converges towards the 
asymptotic solution as the grid is refined. Two further configurations were tried - a 
solid wall, and symmetry, at xmSx = 4 .  The values obtained at the entrance to  the 
side branch did not depend signficantly on the method used a t  x = x,,,. This is not 
surprising in the light of the strong decay implied by the asymptotic solution (see 
Appendix A). In the results presented below, a solid wall was used for Problem C. 

3.4. The iteration procedure 

The Gauss-Seidel method was used to solve the system of finite-difference equations. 
Each complete sweep through the grid was split into a sweep on velocity followed by 
a sweep on vorticity, so that all the velocity values were updated before the vorticity 
was calculated. This ensured that the values used to approximate the derivatives 
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h II. 5 h II., 5, 

& 0.92703 7.0824 & & & 0.94124 8.5527 
& 0.93769 8.1851 & & & 0.94464 9.0025 
& 0.94354 8.8825 & & & 0.94549 9.1150 

TABLE 2.  Values from the axisymmetric problem A at. ( 2 , ~ )  = (-&, g). 7,he and ce were obtained 
using hz-extrapolation. 

appearing in the forcing terms G in (2.11) all came from the same iteration (mixing 
values from different iterations slows down the rate of convergence). The most 
straightforward ordering was used for the sweep through the grid, i.e. an inner loop 
with j ( r )  increasing, and an outer loop with i ( x )  increasing. Various other strategies 
were tested, but there was little difference in the convergence rate. The wall vorticity 
and main-tube far-field velocity and vorticity were calculated a t  the start of each 
sweep. Equation (3.2) was solved every sweep. 

The convergence test was based on the velocity integrals (2.14f) and (2.17g), with 
the iteration continued until these quantities were constant to at least six signficant 
figures. Checks on absolute and relative changes to the dependent variables showed 
this to be adequate. 

3.5. Accuracy 
All the finite-difference equations have truncation error O(h2),  and once solutions 
were found on successive grids (e.g. M ,  = 16 and 32). h2-extrapolation was used in an 
attempt to improve the results (this is discussed further below). 

Consider the axisymmetric problem A. It can be recast in stream function-vorticity 
terms, and solved in standard fashion. This was done, using the Woods (1954) 
formula for the boundary vorticity. Good agreement was found for the results 
obtained from the stream function-vorticity and velocity-vorticity calculations. I n  
particular, for the extrapolated results with M ,  = 32 and 64, graphically identical 
streamline patterns were obtained. Further, the streamline patterns from the stream 
function-vorticity method with M ,  = 16 and 32 and M ,  = 32 and 64 were also 
identical, although this was not true for the velocity-vorticity results. Hence the 
stream-function-vorticity method is more accurate than the velocity-vorticity 
method. 

It is not immediately apparent that h2-extrapolation is useful in a problem with a 
singularity. Using the results from the stream function-vorticity calculation on the 
three grids ( M ,  = 16, 32 and 64), the behaviour of the numerical solution was 
investigated. Over most of the grid, the difference between the values from the 
different grids was broadly consistent with an h2 error, although the variation was 
small and the extrapolation process had little effect. However, the behaviour cannot 
be said to  be h2 a t  points strongly influenced by the corner singularity. I n  table 2, 
values are given for a point near the corner where the largest variation between the 
grids was found. Also given are various extrapolated values. There is a consistent 
trend in the values as the grid is refined, and the extrapolation process appears to 
improve the results. This was true throughout the grid, and the values used below are 
the extrapolated values from the stream function-vorticity method with M ,  = 32 
and 64. Note however, that the same flow pattern would be obtained, and the same 
conclusions would be reached, if the finest-grid solution was used instead of the 
extrapolated values. 
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Dagan ct al. (1982) have solved a similar axisymmetric problem, using an infinite- 
series method. In  their problem, the matching condition down the side tube, (2.12c), 
was replaced by a symmetry condition. Excellent agreement was found between 
their results and values obtained from our present stream function-vorticity method 
with the same symmetry condition (indeed the agreement was also excellent with the 
values obtained by ( 2 . 1 2 ~ )  - the symmetry condition having no effect on the results 
obtained in the main tube). 

For Problem C, we have no other numerical solution with which to compare our 
results. However, our solution is physically scnsible, and shows excellent qualitative 
agreement with solutions of the analogous two-dimensional problem (see in particular 
Higdon 1985), and experimental studies (Taneda 1979; Shen & Floryan 1985). Also, 
main-tube test calculations with the velocity specified on x = 0 gave satisfactory 
results with the grids used here. The tests included problems with discontinuous, but 
not singular, wall shear. A further test, using the eddy solution given in Appendix A, 
gave excellent results. The solution used below for Problem C is the h2-extrapolation 
from M ,  = 32 and 64. 

Finally, the pressure and shear values shown in the plots below are those obtained 
from the integral solution (2.5a, 6 )  for the flow in the main tube. These shear values 
were used as they showed a smaller variation with the grid step than the values given 
directly by the numerical solution, although the results presented below would not 
be affected significantly if the latter were used. The two sets of shear values were 
converging with decreasing step size. 

4. Results 
In this section the results of the study are presented; first, the axisymmetric 

solution (A) ; second, the zero-suction component (C) ; and third, flows given by a 
combination of the two (Q,, A+ C). Finally, the entrainment region of the fluid sucked 
into the side branch from the main tube is considered. Below, upstream or 
downstream of the side-branch entrance will refer to the region in the main tube with 
r > 1 and y < 0 or y> 0, respectively. 

4.1. The axisymmetric problem 

Figure 3 gives the flow for an incompressible fluid being slowly sucked down a 
circular pipe from a semi-infinite region, i.e. the solution to the problem formed by 
(2.11)-(2.14). It contains the streamlines, the velocity a t  the side-branch entrance, 
and the wall shear stress ry and pressure on the walls of the main tube. Sampson 
(1891) derived an analytic solution for the Stokes flow through a circular hole in a 
wall of zero thickness (this solution can be found in a more accessible form in de 
Mestre & Guiney 1971). Except near the entrance the streamlines in Problem A are 
graphically indentical with those in Sampson’s solution, or indeed its limit form - the 
flow generated by a point sink a t  the origin, as given by the leading term of 
(2.14d, e ) .  Unlike Sampson’s solution, the present solution has a non-zero transverse 
velocity at the entrance, and hence non-zero wall shear. As noted by Dagan et al. 
(1982), the axial velocity a t  the entrance to the side branch (u,,(O,r)) lies between 
that of Sampson and Poiseuille flow, and there is a short entrance length (uo is within 
1 % of Poiseuille flow a t  x = 0.6). Compared with Poiseuille flow, uo(O, Y) is smaller in 
the centre of the tube and greater near the waIls. Both the pressure and the shear 
stress on the walls of the main tube show a singularity as r + 1 + , as expected. 
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x = 4  

FIGURE 3. Axisymmetric solution A :  (a) evenly spaced streamlines; ( b )  main-tube wall shear stress 
7y (-) and pressure p (- - - -) (c) velocity on the side-branch entrance (s = 0) : -, u, ; -.-, 
u Y x 2 ;  ----, Poiseuille flow. 

4.2. The zero-suction component 
As noted above, this the very slow shear flow of an incompressible fluid along a 
flat wall with an semi-infinite circular pipe set perpendicularly into the wall (see 
figure l) ,  the governing equations being (2.11) and (2.15)-(2.17). The flow along the 
plane of symmetry ( z  = 0 )  is shown in figure 4, which gives particle paths (streamlines), 
the velocity components a t  the mouth to the side branch, and the shear stress (7y) 

and pressure on the walls of the main tube. The pressure on the wall is small com- 
pared with that generated by the axisymmetric component of flow, a consequence 
of weakness of the normal velocity (u,) at x = 0. 

Also clear from figure 4 is the position of the dividing streamline between the outer 
flow (essentially that past the side branch) and the inner flow in the side branch. As 
for the analogous two-dimensional shear flow past a slot (Takematsu 1966), the 
separation and reattachment of the flow occur on the side-branch wall, and the outer 
flow penetrates a considerable depth into the side branch. (Indeed, it follows from the 
Stokes expansion (Moffatt 1964) that, unless the flow is symmetric a t  the corner, it 
cannot separate from the corner (Takematsu 1966; Weinbaum 1968).) The present 
calculations give the separation (and reattachment) point as x, = 0.08, and the depth 
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of the dividing streamline on r = 0 as xd = 0.174. Because of the effect of the corner 
singularity on the calculation procedure, the former value is a reasonable but not 
particularly accurate estimate of z,. For comparison, Takematsu ( 1966) gives 
x, = 0.035 for the two-dimensional problem, but this must be regarded as a crude 
estimate since he uses only four terms of his series solution. Weinbaum (1968) has 
shown that separation/attachment near a sharp 90" corner occurs a t  an angle of 
approximately 41.2' (see figure 6). This point is discussed further below, but, 
encouragingly, the separation/attachment angle found from our numerical solution 
for Problem C shows excellent agreement with Weinbaum's value. 

The perturbation to the flow in the main tube on the plane of symmetry is small 
except in the immediate vicinity of the side-branch entrance, while in the side branch 
the flow beneath the dividing streamline takes the form of a sequence of large 
asymmetric eddies of decreasing strength (see figure 4 and Appendix B). As 
mentioned in $ 3  above, three different sets of boundary conditions were used a t  
x = z,,, in place of ( 2 . 1 7 ~ ) .  With x,,, = 4, the solid wall and the symmetry condition 
gave essentially the same results - a large clockwise-rotating eddy, with a smaller 
eddy, rotating slowly in an anticlockwise sense, beneath it. This is the same pattern 
as that found by Higdon (1985) for the two-dimensional problem with the same 
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aspect ratio. Using the asymptotic solution to set the values a t  x,,, = 8 produced a 
sequence of eddies decaying in strength, as predicted. 

The discussion of the solution for C above is concerned with the flow in the plane 
of symmetry. However, the flow is similar for non-zero z with z < 1. In  particular, 
except immediately near the corner (i.e. Il-rl < 1) the flow is largely two- 
dimensional with u, much smaller than uy (this follows from the solution, which has 
v1 z - w1 over most of the domain). The surface dividing the inner and outer flows 
is obtained by rotating the dividing streamline suggested by figure 4. For the outer 
flow, particle paths with z $. 0 are similar to those with z = 0, with some, though not 
much, movement towards (in y < 0) and then away from (in y > 0) the plane of 
symmetry. In  the large eddies below the dividing surface, particles traverse simple 
orbits similar to those shown in figure 4, with little movement in the transverse 
direction (this is as predicted by the asymptotic solution given in Appendix A).  A 
good idea of the values of uy on the side-branch entrance, and the wall shear stress 
7y, for non-zero z ,  is obtained by rotating the solutions given in figure 4, although 
7y has a weaker singularity on y = 0 (O((1 - T ) - ; ) )  than on z = 0 (O((1 - r ) -0 .456)) .  
Further, for any particular value of r ,  both the wall shear stress (7 and 7y) and the 
pressure have maximum magnitude on the line of symmetry ( z  = 0 or 8 = 0, x ; r > l ) ,  
with the shear taking its minimum magnitude on y = 0 (8  = f i x ; r  > 1 )  and the 
pressure dropping to zero there. Indeed, the pressure, u, and u, are zero a t  y = 0 for 
all x and z ,  as can be seen from (2.10). 

4.3. Composite flows 
We shall now consider linear combinations of the two basic flows described above. I n  
general, adding a multiple (Qb > 0) of Problem A to Problem C gives, in comparison 
to C alone, an increase in the magnitude of the pressure and the shear on the wall of 
the main tube upstream of the side branch. It follows that there are no stagnation 
points on the main-tube wall in this region. Further, with Qb > 0, the magnitudes of 
the pressure and shear on the main-tube wall are greater upstream than downstream 
of the side branch (comparing the points (0, y, z )  and (0, -y, z )  with r > 1). Indeed, 
if Qb is sufficiently large (see below), there will be a stagnation point on the main- 
tube wall downstream of the side branch. Note that a true stagnation point (i.e. with 
7 zero) can occur only on the line of symmetry, although a particular component of 
the shear may be zero for non-zero z - e.g. 7y in y > 0. 

Because of the fast exponential decay in the strength of C in the side branch, all 
except the eddy closest to the entrance will be suppressed with a small but finite 
Qb (lop3 say). Consider Qb = 1/200. This leaves the strongest eddy intact, but 
considerably reduced in size and strength, and compressed onto the upstream wall of 
the side branch (figure 5). The fluid sucked into the side branch from the main tube 
passes over the top of the eddy, between it and the downstream wall of the side 
branch, then spreads out to occupy all of the side branch below the eddy. 

With Qb = 1/200, as well as the flow separation and reattachment on the upstream 
wall of the side branch due to the eddy, there is a stagnation point on the 
downstream wall, where the flow along the main tube and that down the side branch 
divide. Compared with Problem C, the separation a t  the top of the eddy is now 
further down the wall, and the stagnation point on the downstream wall is closer to  
the entrance. As Qb is increased from 1/200 the eddy remains on the upstream wall, 
but decreases in strength and size until a t  Qb = 0.027 it is suppressed completely by 
the flow into the side branch. For all Qb 2 0.027 the flow remains attached to the 
upstream wall of the side branch. 

4 2  
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FIGURE 5.  &, = 1/200 (see figure 4 for description). 

On the downstream side-branch wall, as Qb is increased from zero the stagnation 
point moves closer to the entrance, until for Qb = Qbc, it is on the corner x = (0, 1 , O ) .  
The three-dimensional flow near a sharp edge is analysed in Appendix B, from which 
it follows that :  

7, - ( Q ~  A ,  + A ,  cos e)  e 4 5 6  + ( Q ~  B, + B, cos e) a--0.091, ( 4 . 1 ~ )  

re - C, a-f sin 0, (4.1 b )  

on the main-tube wall near the side branch, where cr = r -  1,  0 < a4 1 ,  and A,,  A, ,  
B,,B,, and C, are constants. Further, the terms given in (4.1) are the only terms in 
the Stokes expansions that give non-zero wall shear as a+O. The terms of 0 
and 0 (a-O.Ogl)  in ( 4 . 1 ~ )  arise from components of flow in a plane normal to the walls 
which are, respectively, asymmetric and symmetric about the corner, while ( 4 . l b )  is 
due to the flow along the edge. Inspection of the solutions, or physical reasoning, 
shows that A ,  > 0 A ,  < 0 and C, > O .  Weinbaum (1968) studied the two- 
dimensional flow that gives (4.1a), and showed that the corner is a separation/ 
stagnation point only if the Aow is symmetric about the corner. Hence, from 
( 4 . 1 ~ )  

QbC = --. 4 (4.2) 
A0 
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FIGURE 6. Dividing streamline in the plane of symmetry ( z  = 0) for &, x Qbc. 
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FIGURE 7. Contours of zero wall shear stress (TJ .  From the centre, these 
&, = !j, 1, 2, 5 ,  10, 25, 50 and 100. 

have 

Weinbaum (1968) also showed that if the flow in the plane normal to the walls is 
asymmetric with respect to the corner, separation/stagnation occurs away from the 
corner (approaching the corner asymptotically as the asymmetric component of flow 
tends to zero) with a constant separation angle of 41.2' approximately. Hence the 
flow behaves discontinuously with respect to Qb ; for 0 < Qbc - Qb 4 1 the stagnation 
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FIGURE 8. &, = 0.11 (see figure 4 for description). 

point on z = 0 occurs on the side-branch wall near the corner with an attachment 
angle of 41.2"; when Qb = Qbc the flow is symmetric about the corner with the 
stagnation point on the corner ; and if 0 < Qb - Qbc 4 1 the stagnation point is on the 
main-tube wall, again with an attachment angle of 41.2' (see figure 6). The effect of 
this discontinuity can also be seen in the main-tube wall shear. Suppose 8 = 0 and 
g --f 0 + . Then, for all Qb < Qbc, 7, + - co as If Qb = Qbc, 7, + - co again, but as 
ff-o.oBl , while if Qb > Qbc, 7, + + 00 as 6'.456. 

If Qb = 0, it  follows from (4.1) that the flow in the main tube is towards the side 
branch a t  the upstream edge, and away from it at the downstream edge, as might be 
expected. Suppose now that 0 < Qb < Qbc. Then the region in which flow a t  the edge 
is away from the side branch is reduced to -0, 5 8 5 8,, where 8, = c0s-l (Qb/Qbc), 
with flow towards the edge elsewhere. This implies that there are two regions with 
backflow ( -in < 8 5 - 8, and 8,s 8 <in), in which ry > 0 and the flow in the main 
tube near the downstream edge of the side branch is towards the side branch. As 
Qb -+ Qbc, Os + 0 and the portion of the downstream edge of the side-branch entrance 
in which the flow is from the side branch into the main tube disappears in the limit. 
For Qb >Qbc, r, > 0 for all 8, and there is backflow everywhere a t  the downstream 
edge in the main tube. As Qb increases, the region with backflow grows, but never 
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FIGURE 9. Qb = 2 (see figure 4 for description). 

extends into y GO (for 0 < u < 1 this can be seen from (4.1), and for other r > 1 it 
can be deduced from the Fourier decomposition (2.10) and physical arguements). 
Figure 7 shows the region for which rY > 0 for various Qb > Qbc. 

Also of interest is the behaviour of the total wall shear near the side-branch 
entrance. From (4.1) : 

except a t  8 = f8, if Q, < Qbc, where T - C ,  f3-t lsin 81. Thus, if Qb < Qbc, T will be 
least near 8 = +8,, with its maximum a t  8 = 'ic and a local maximum at 8 = 0. If 
Qb 2 Qbc, 7 will take its maximum a t  8 = 'ic and its mimimum at 8 = 0. 

The behaviour of the pressure p on the main-tube wall as u -+ 0 is 

7 I&bAo+A, ~ 0 ~ 6 1 g - ~ . ~ ~ ~  &S f3+0, 

1.8464( Qb A ,  + A ,  cos 0)  ~ 0 . 4 5 6  - 4.5922(~,  B, + B, cos 8 )  a-0.091. (4.3) 

Note that the flow along the edge does not give a singular term in the pressure (see 
Appendix B). For Qb = 0 the wall pressure in the main tube is increased a t  the 
upstream edge of the side-branch entrance, and decreased at the downstream edge. 
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FIGURE 10. Total wall shear stress 7 for &, = 2 .  

If 0 < Q, < Qbc, the pressure is reduced for -Bs 5 B 5 B,, and increased elsewhere, 
while if Q, 2 Qbc, the edge pressure is increased for all 0, but has its minimum a t  
B = 0 and its maximum at 8 = .n (see figures 4,5,8 and 9). 

Equation (4.2) and, separately, the wall shear or the velocity from the numerical 
solutions can be used to estimate Qbc. Both gave Qbc w 0.11. Figure 8 shows particle 
paths, etc., in the plane of symmetry for Q, = 0.11. Note in particular the weak 
singular behaviour of the shear and pressure on the downstream wall, as predicted 
by ( 4 . 1 ~ )  and (4.3). 

The velocity on the mouth of the side branch is greatly dependent on the value of 
Q,. For Problem C, u, is antisymmetric and uy symmetric with respect to y on 
x = 0, r < 1, while the opposite is true for Problem A. As Qb is increased from zero, 
the original symmetry is disturbed, until at Q b  = Qbc both u, and uy are positive 
everywhere on the side-branch entrance (see figures 4,5 and 8). 

Suppose now that Q, > Qbc. As Q, is increased the stagnation point on the 
downstream wall of the main tube moves downstream (see figure 7), and the flow at 
the entrance to the side branch is increasingly dominated by the axisymmetric 
component of flow A. For example, when Q,  = 2, the velocity components a t  the 
entrance are close to those from A, and the pressure on the main-tube wall is 
dominated by that from A, even a t  a considerable distance from the entrance (see 
figures 3 and 9). The latter is not surprising in view of the dependence of the wall 
pressure on u, ($2). Also shown in figure 9 is the dividing streamline in the plane of 
symmetry z = 0. This streamline, which separates the fluid going along the main tube 
from that going down the side branch, makes an acute angle with the wall 
downstream of the stagnation point, with the fluid particles turning back towards 
the stagnation point. Weinbaum’s (1968) results (see figure 6) and the present 
numerical solutions shows that this angle is acute for all Q, > Qbc. Figure 10 is a 
surface plot of the total wall shear stress r for Q, = 2. The dominant effect of the 
corner singularity on the wall shear stress near the side-branch entrance can be seen 
clearly. In general, the wall shear varies significantly from its incoming value of unity 
only in a region close to the entrance, except for large Q,. Note also the dip in r near 
the stagnation point downstream of the entrance. 
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FIQURE 11. Entrainment region a t  y = - 3. 

FIQURE 12. Dividing streamlines for Q, = 2. The particle path ( d )  lies in the plane of symmetry 
( z  = 0) ,  ( 0 )  is at  the main tube wall, while (m)  is the side-branch entrance ( r  = 1 on x = 0). 

4.4. The entrainment region 

Of interest in this problem is the entrainment region, i.e. the region in the main tube 
occupied by fluid which is eventually sucked down the side branch. This was 
established by calculating particle paths. Figure 11 shows the results for various 
Qb at y = -3, where the flow is close to the incoming shear flow. Figure 12 shows the 
dividing streamlines for Qb = 2. 
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5.  Discussion 
First, we note that although the analysis above is in terms of a suction problem 

with the flow down the side branch, a change of sign gives the solution for the 
injection problem with the main-tube shear flow in the opposite direction. Also, 
instead of fixing the basic shear rate in the main tube and varying the flow rate in 
the side branch, we could do the reverse, i.e. the results given in 94 above also 
describe flows with a far-field shear rate in the main tube of Q;’ and a volume flow 
of 2n in the side branch. For example, with the appropriate rescaling, figure 5,  which 
has Qb = 11200, gives the solution for a flow with a high shear in the main tube. 

Consider the solutions as presented with a suction flow. Except near the entrance 
to the side branch, the axisymmetric flow A is close to Sampson’s (1891) solution in 
the main tube, and to Poiseuille flow in the side branch. At the entrance, the 
streamlines in Problem A have moved out from the axis compared to those in 
Poiseuille flow. The flow with an incoming linear shear in the main tube and zero net 
flow into the side branch (Problem C) is, except in the immediate neighbourhood of 
the entrance, essentially two-dimensional, with the outer flow penetrating into the 
side branch and generating a sequence of counter-rotating eddies which decrease 
rapidly in strength. For composite flows (Qb A + C) we have found a complex pattern 
of behaviour for small side-branch flow rates. For Qb < 0.027 there is at least one 
three-dimensional eddy in the side branch, while for Qb > Qbc x 0.11, the flow in the 
side branch is unidirectional. For 0 < Qb < Qbc, the corner singularity implies regions 
of both forward and reversed flow, and an associated decrease or increase in the 
pressure, a t  the downstream edge of the side-branch entrance, as detailed in 94 
above. For &, > Qbc, there is an increase in the pressure near both the upstream and 
downstream edge, while for &b of 0(1) ,  the flow near the entrance is dominated by 
the axisymmetric component of the flow (Problem A), and in the far field by the 
main-tube shear flow. Owing to the weakness of u, at the mouth in Problem C, the 
contribution from A to the pressure on the main-tube wall is dominant for r of O( l),  
except for very small side-branch flow rates. 

Consider now the physiological problem that motivated this study. Before drawing 
any conclusions we should examine the applicability of our model to the experimental 
conditions. A basic complication arises from the fact that blood is not a homogeneous 
Newtonian fluid. While the non-Newtonian behaviour is insignificant a t  a sufficiently 
high shear rate (see Car0 et al. 1978, p. 176), it may become important near a 
stagnation point. This aspect is beyond the scope of the present study. 

Our idealized problem was formulated by assuming that the flow in the main tube 
is steady and fully developed. This is not the situation in the thoracic aorta, where 
the flow is periodic with little or no net flow for more half the flow cycle. Following 
this resting phase there is a pressure pulse, with flow undergoing a rapid acceleration 
followed by a rapid deceleration. There is likely to be a period of relatively weak 
reversed flow before the net flow ceases (see Pedley 1980, p. 40). The Wormersley 
parameter a is defined as a = a*(po/,u)i, where w is the angular frequency of the flow. 
If a is large, the flow can be analysed in terms of an inviscid core flow with a Stokes 
layer of thickness 4a*/a a t  the wall (details can be found in Pedley 1980). 

In a fully grown rabbit, representative values for the thoracic aorta are U* = 60, 
a* = 0.16, b* = 0.016, and ,u/p = 0.04, all in c.g.s. units, where U* is the peak value 
(McDonald 1974; CR). Estimates for the heart rate vary from 200 to  300 beats/min. 
Taking 240 as a characteristic value gives w = 8n for the fundamental frequency. 
Hence, a x 4, and we cannot assume an inviscid core flow with a distinct boundary 
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FIGURE 13. The cross-section of a branch formed by an intercostal artery and the thoracic 
aorta in a rabbit (taken from a photograph supplied by R. Kratky). 
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FIGURE 14. Prelesion at an intercostal orifice (after Cornhill C Roach 1976). The flow is from 
proximal to distal. 

layer (cf. Sobey 1977). Near the entrance to an intercostal artery, the relevant 
lengthscales are given by the dimensions of the entrance. Non-dimensionalizing as in 
$2, we obtain a peak main-tube Reynolds number of 240, and since S = A, Re, = 2.4. 
If we now assume that the characteristic time is the same as in the core, i.e. w-l ,  and 
define the local Strouhal number as St = wb*/SU*, then St x 0.067, and Re,St x 0.16. 

Therefore, as a first approximation, it appears reasonable to ignore the unsteady 
terms in the Navier-Stokes equations and the effect of the curvature of the wall of 
the thoracic aorta. However, inertia is not negligible as Re, is O(1). Dropping the 
unsteady terms allows a quasi-steady analysis, and hence the use of the Stokes 
equations for a large part of the flow cycle, in particular, suitably scaled high-&, 
solutions. Unfortunately, the above Stokes analysis may not give accurate results for 
the peak flow rates. 
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In  our model we have also assumed that the side branch is perpendicular to the 
main tube. The cross-section of a typical intercostal-aortic branch is shown in figure 
13, from which it is clear that our assumed geometry is not realistic, although it is 
an obvious first step. The question of a realistic geometry for a model problem is 
further complicated by the flexibility of blood vessels - the cross-sectional area of an 
artery can vary by around 20% during a flow cycle. Moreover, high shear stresses 
and pressure might induce a considerably larger variation near a branch. There will, 
however, be a stagnation point somewhere on the downstream wall, and our 
solutions suggest that  its position - i.e. whether it occurs on the main-tube or side- 
branch wall - is important. 

Figure 14 shows results obtained by CR for a particular intercostal orifice. Note 
that the prelesion area is maximum downstream, and does not extend upstream, 
although atherosclerosis may appear all around the ostium later (Nerem & Levesque 
1983). Our results, while valid for the particular problem considered, can only be 
interpreted in a qualitative manner with respect to the physiological problem. 
However, in the light of CR’s results (and others -see Chobanian 1983)) they are 
consistent with, and offer support for, the low-shear hypothesis outlined in 5 1 
above. 
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Appendix A. The asymptotic structure in the side branch 
In $2 the zero-suction component of the flow in the side branch is required to decay 

tfo zero as x + co. Here, we derive the details of this decay. For the analogous two- 
dimensional channel, Moffatt (1964) demonstrates that the flow takes the form of a 
series of counter-rotating eddies, all of the same length but with magnitude decaying 
exponentially in x, and we might expect a similar structure for the present 
problem. 

It is convenient at this stage to use Helmholtz’s theorem to introduce a vector 
potential, i.e. a vector y = ($x, $r ,  I/T@) in (x , r ,O)  such that 

u = v x y ,  (A 1 )  

where, since u = (ux,u,,u8) is soleniodal, y can also be made solenoidal. The 
equations of motion now become 

v2y = -<, (A 2) 

and v y  = 0, (A 3) 

where < = (Q, cr, I&) is the vorticity vector. 
The boundary conditions are : 

@z=$o=u ,=uo=O a t r = 1  (A 4) 

plus a boundedness condition at r = 0. Note that (A4) ensures that u, = gr = 0 a t  
r =  1 .  
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R e ( 4  
2.5678 
5.3172 
6.0038 
8.5330 
9.2322 

11.705 
12.417 
14.863 
15.586 
18.015 

I m ( 4  
1.1226 

0 
1.6081 

0 
1.8169 

0 
1.9613 

0 
2.0726 

0 
TABLE 3. Eigenvaluee k from (A 11) in order of increasing real part 

Assuming a separable solution, we find that the vector potential, velocity and 
vorticity can be written as 

= e-kz( Yz(r) sin 8, Yr(r)  sin 8, Y,(r) cos e), 
u = eckz(U,(r) cos8, U,(r )  cos 8, U,(r) sin e), 
( = e-kZ(I'z(r) sin 8, r,.(r) sin 8, T , ( r )  cos e). 

(A 5 )  

(A 6) 

(A 7)  

r, = cJ,(kr),  (A 8a)  

and 

With (A 7) it is easily shown that the bounded solenoidal solution of (A 3) is: 

r,. = aJ,(kr)+ (a+c)J , (kr ) ,  

I-', = aJ,( kr) - ( a  + c )  Jz( kr) 

where a and c are constants, and J, is the Bessel function of the first kind of order 
n. Equations (A 2), (A 7)  and (A 8) now yield 

C 
Y, = AJ,(kr)+-rJ,(kr),  2k 

(A 9b) 
C (a  + c )  J,(kr) + - rJ,( kr ) ,  ] 2k 

Y6 = BJ,(kr)- (A 9c) 

as the bounded solenoidal solution for r. 
Obtaining u from (A 1) and (A 9), the boundary conditions (A 4) produce 

and the eigenrelation 

k2J:(k) - kJ i (k ) J l (  k) + (k - 2) J,(k) J; (  k) - kJ;( k) = 0. (A 11) 

The first 10 non-trivial solutions of (A 11)  that have a positive real part are given 
in table 3. These solutions alternate between complex and real k, with 
k, = 2.5678 + 1.2261 the most important as it has the smallest real part. Note that no 
pure imaginary solutions were found fork, i.e. all the separable solutions obtained for 
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FIGURE 15. Side-branch eddies for &, = 0 (z  = 0). + , denotes an eddy centre. 

the flow were either exponentially growing or decaying with x, the growing 
solutions being unacceptable here. For any k satisfying (A l l ) ,  both its complex 
conjugate and -k are also solutions of (A 11). 

As is known from the analogous two-dimensional problem (Moffatt 1964), a 
complex k implies a succession of eddies of the same size, decreasing in magnitude 
with increasing x. With k = k,, the eddies are 2.798 in length, and the damping factor 
between successive eddies is 1321. In comparison, Moffatt obtained 2.78 and 350 for 
these values for the two-dimensional problem. Hence, the two flows have eddies of 
approximately the same size, but there is a much stronger damping in the three- 
dimensional case. For all the other complex k given in table 3, as the real part of k 
increases, so does the complex part. This implies larger, more heavily damped 
eddies. 

The flow pattern in the plane of symmetry (0 = 0 , ~ )  is shown in figure 15. The 
eddies show a marked asymmetry, with their centres much closer to the top. This is 
caused by the rapid decay in magnitude with decreasing x. Reverting to Cartesian 
coordinates (x, y ,  z ) ,  where the plane of symmetry is given by z = 0 as above, the 
z-component of velocity is given by e-””(U,+ U,) cos 8 sin 8. Inspection of the solution 
shows that U,+U,  is (relatively) small, and hence that the flow for non-zero z is 
essentially two-dimensional in character. The orbits of particles off the plane of 
symmetry (i.e. with x non-zero) are similar to those shown in figure 15. 
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The angle a t  which the separation streamline leaves the wall in the plane of 
symmetry can be determined from the Taylor series for u, and u, near the separation 
point. This is found to be approximately 24.4" (cf. 41.2" for separation near a sharp 
270" corner (Weinbaum 1968)). 

Finally, we note that an analysis similar to the above can be performed for any of 
the other Fourier components of the flow. 

Appendix B. Steady three-dimensional flow near a sharp corner 
In  $4 above expansions for the flow near the corner formed by the junction of the 

main tube and the side branch were employed. These expansions will now be derived. 
Consider the flow in a domain bounded by two intersecting semi-infinite planes - i.e. 
the region where ( z , u , $ )  are cylindrical polar coordinates such that 
the intersection of the planes is given by cr = 0 (see figure 16). Note that we are 
interested in the flow near a two-dimensional edge or corner, not a three-dimensional 
corner (such as the corner of a cube). The flow near a sharp corner is assumed to have 
a local similarity form, as in Moffatt (1964) and Moffatt & Duffy (1980). Both of these 
studies concern two-dimensional flow, but in different directions -the former 
considers the flow in a (a, q5) plane normal to the corner, and the latter the flow in the 
z-direction along the corner. We shall show that the three-dimensional flow near a 
sharp edge reduces to two sets of two-dimensional flows which are essentially 
perpendicular in direction and are generalizations of those of Moffatt (1964) and 
Moffatt & Duffy (1980). 

Sufficiently close to the corner, inertia will be negligible and steady flow will be 
governed by the Stokes equations. Further, the a2/az2 term in the Laplace operator 
will not appear at leading order. The boundary conditions are no slip on the walls, 
i.e. 

< q5 < 

(B 1) u = (uz, u,,, us) = 0 on q5 = k 
It is easily shown that a quasi-two-dimensional flow satisfying the Stokes 

equations to leading order is given by 

where 1c. = E(z) Y(U, $1, (B 3) 

g-4  1, (B 4) 

E(z )  is an arbitary function, and Y is a stream function given by Moffat (1964) and 
Weinbaum (1968). For the case of interest here, = $n and, 

1 cos 
Y=p+ cosAq5- cos ( A  - 2)q5 [ cos ( A  - 2)$h0 

sinpq50 sin@-2)q5 +..., (B5) 1 
where A = 1.544, p = 1.909 and /3 and y are constants. The eigenvalues h and p 
correspond to flow components which are antisymmetric and symmetric about 
q5 = 0, respectively. The given components are of particular interest since they 
give infinite shear (vorticity) on the walls as cr+O (the vorticity from all other 
components tends to zero as u+O). 
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‘\ 

FIGURE 16. Coordinate system near a corner ( z  is normal to the page). 

For a three-dimensional flow; the continuity equation is 

-+--(uu,)+--9 a%, 1 a 1 au = 0, 

aZ g a r  0- a$ 
which suggests velocity components of the form: 

u, = u” u, (2, $), u, = a”+’ u, (2, $), uo = U”+l IT, ( 2 ,  $). (B 7)  

The vorticity vector can be calculated from (B 7)  and substituted in the vorticity 
transport equation - the vector Laplacian of vorticity is zero. To leading order, the 
u- and $-equations are satisfied by 

u, = A ( z )  u”1 cos v1 $ + B (2) ~ ” 2  sin v 2  $, (B 8) 

where v1 and v 2  correspond to symmetric and antisymmetric flows respectively, and 
A and R are arbitrary functions. Applying the boundary condition (B 1 )  gives 

in + mn n+mn v1 = ~ , v2=- ; m = 0 ,1 ,2 ,  ... 
$0 $0 

Taking the symmetric component first the z-vorticity equation yields 

au ,  
a$ 

( v1 + 2) IT, - - = C(  z )  cos v1 $ + D( z )  sin v1 $, 

where C and D are arbitrary, while the continuity equation (B 6) reduces to 

Equations (B lo), (B i t )  and the boundary conditions (B 1) now produce: 

u, = A  ( 2 )  (T”’ cos v1 $, 
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In  a similar manner, the antisymmetric components are 

I u, = B(z) u”2 sin v2 q5, 

107 

I 1 
U ,  = - - B ( z )  a”z+l sin v 2  q5, 

v,+2 

uc = 0. J 
Equations (B 9), (B 12) and (B 13) give two sets of independent leading-order 

solutions which are valid for all q50. There is another independent solution, which has 
as its leading term 

u, = - ia’(z) u3 (cos 2g5 - cos 24,,), 

uc = 0, 

(B 14) 1 u, = a(z)  u2 (cos 2q5 - cos 2q50), 

if qb0 + in or $I, and 

u, = -&~‘(z)u~[q5~ sin2q5,-q5 sin2q5--iccos2q5+(lnn) cos2q51, 

u+ = 0, 

(B 15) i 
u, = a(z)  u2 [q50 sin 2$0 -q5 sin 24 + (In u) cos 2$], 

if q50 = in or in. In fact, (B 14) reduces to (B 12) with m = 0 or 1 in (B 9) if q5,, = in or 
gz, respectively. The symmetric solutions obtained from dropping the z-dependence 
in (B 12)-(B 15) were found by Moffatt & Duffy (1980) who considered Poiseuille flow 
in an irregular shaped straight duct with a sharp corner. 

The flows given by (B 12) and (B 13) have a relatively small applaz-at most 
O(a”1) - where p is the dimensionless pressure, while the flow given by (B 14) or (B 15) 
has ap/az = K a  ( z )  + 0 (rr2), where K is a constant depending on q50. The latter will 
usually be the dominant part of ap/az as u+ 0. Hence, ap/az is Poiseuille-like in that 
it does not depend on u or q5 to leading order (this does not, of course, imply that p 
is independent of u and q5 a t  leading order). Note also that as a + O ,  u, is the 
dominant part of the flow. 

In the above, the functions A(z ) ,  (B(z), etc. are determined by matching to  the 
outer flow, and unless they are constants, the solutions are not exact solutions of the 
Stokes equations but are the leading terms of series solutions. The four solutions 
obtained are independent, and each represents a two-dimensional flow ; one, (B 2)- 
(B 5 ) ,  a flow in aplane normal to the walls, and the others (B 12), (B 13), and (B 14) or 
(B 15), flows essentially along the edge u = 0. It is stressed that, given the similarity 
form (B 7), the two-dimensional nature of these flows was derived, not assumed. As 
mentioned above, our solutions are generalizations of those of Moffatt (1964), 
Weinbaum (1966), and Moffatt & Duffy (1980). Because of the wasy they were 
obtained - taking all such similarity solutions of the vorticity transport equation, 
using these to derive the velocity components, then applying the boundary 
conditions - it appears that they are complete to the order given. 

In general, not only are the four sets of solutions independent (although they may 
be linked by the outer flow), they have different orders with respect to u, at least a t  
leading order. There are two exceptions to this; when uo = in (i.e. flow on a flat plate) 
the eigenvalues for the symmetric flow along-khe wall (B 12) and the antisymmetric 
component of the flow in a plane normal to the wall (B 2)-(B 5) coincide at leading 
order, with v1 = h- 1 = 1, as do the eigenvalues for the antisymmetric flow (B 13) 
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and the symmetric component of (B 5 ) ,  where v2 = p- 1 = 2; and when $,, = x (i.e. 
flow a t  the edge of a flat plate) the symmetric flow (B 12) and both components of 
(B 5 )  are of the same order, with v1 = A -  1 = p- 1 = f. Hence, with $o = in or x 
there exists the possibility of a true three-dimensional flow when CT 4 1. 

So far we have not specified the order of importance of the various solutions given 
above. This depends on $,,, and Moffatt & Duffy (1980) give a table listing the leading 
terms for the symmetric flow formed by (B 12) and (B 14) or (B 15). For the case 
of special interest here with $,, =@, we find that 

A - 1  < p- 1 < ul(m = 0) < uz(m = 0) < 2 = v1 (m = 1). 

Note that since v1 (m = 0) = 
A ,  p, and u1 (m = 0) are the only terms that can give infinite vorticity as CT-+O.  

< 1 and u2 (m = 0) = $ > 1, the terms corresponding to 
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